A local Tb Theorem for square functions
نویسندگان
چکیده
We prove a “local” Tb Theorem for square functions, in which we assume only Lq control of the pseudo-accretive system, with q > 1. We then give an application to variable coefficient layer potentials for divergence form elliptic operators with bounded measurable non-symmetric coefficients.
منابع مشابه
Multilinear Local Tb Theorem for Square Functions
In the present work we extend a local Tb theorem for square functions of Christ [3] and Hofmann [17] to the multilinear setting. We also present a new BM O type interpolation result for square functions associated to multilinear operators. These square function bounds are applied to prove a multilinear local Tb theorem for singular integral operators.
متن کاملSome local fixed point results under $C$-class functions with applications to coupled elliptic systems
The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...
متن کاملMinimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions
This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...
متن کاملMATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION
Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...
متن کاملA PROOF OF THE LOCAL Tb THEOREM FOR STANDARD CALDERÓN-ZYGMUND OPERATORS
We omit the proof. The following theorem is an extension of a local Tb Theorem for singular integrals introduced by M. Christ [Ch] in connection with the theory of analytic capacity. See also [NTV], where a non-doubling versions of Christ’s local Tb Theorem is given. A 1-dimensional version of the present result, valid for “perfect dyadic” Calder ón-Zygmund kernels, appears in [AHMTT]. In the s...
متن کامل