A local Tb Theorem for square functions

نویسندگان

  • Steve Hofmann
  • STEVE HOFMANN
چکیده

We prove a “local” Tb Theorem for square functions, in which we assume only Lq control of the pseudo-accretive system, with q > 1. We then give an application to variable coefficient layer potentials for divergence form elliptic operators with bounded measurable non-symmetric coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Local Tb Theorem for Square Functions

In the present work we extend a local Tb theorem for square functions of Christ [3] and Hofmann [17] to the multilinear setting. We also present a new BM O type interpolation result for square functions associated to multilinear operators. These square function bounds are applied to prove a multilinear local Tb theorem for singular integral operators.

متن کامل

Some local fixed point results under $C$-class functions with applications to coupled elliptic systems

The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...

متن کامل

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

MATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...

متن کامل

A PROOF OF THE LOCAL Tb THEOREM FOR STANDARD CALDERÓN-ZYGMUND OPERATORS

We omit the proof. The following theorem is an extension of a local Tb Theorem for singular integrals introduced by M. Christ [Ch] in connection with the theory of analytic capacity. See also [NTV], where a non-doubling versions of Christ’s local Tb Theorem is given. A 1-dimensional version of the present result, valid for “perfect dyadic” Calder ón-Zygmund kernels, appears in [AHMTT]. In the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011